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ABSTRACT 

This aim of this paper is to investigate the relationship between the international geographical scope of inventive activities 
and the technological diversification of top R&D performers into related and unrelated technological fields. Further, this 
study addresses a critical gap in understanding how specific contextual factors, that is the technology dissimilarity of 
companies with the foreign R&D host (sub-national) regions, can affect the corporate technological diversification. 
Employing a survey sample consisting of 1,125 top R&D performers, that have applied for 803,066 priority patent 
applications over the period of 2000-2018, our empirical analysis, using a fixed-effects panel regression model, unveils 
significant findings. Firstly, while the breadth in the geographic distribution of foreign inventive activities serves as a 
catalyst for companies to expand and diversify their patent portfolio, the depth discourages it. Secondly, there is positive 
and significant relationship between technology dissimilarity and technological diversification. Moreover, we discover 
that expanding R&D activities into increasing number of foreign locations with a more dissimilar technological base tends 
to hinder the corporate technological diversification efforts, whereas technological dissimilarity with R&D foreign host 
regions positively moderates the relationship between the depth of foreign inventive activities and technological 
diversification, particularly in unrelated domains. 
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1. Introduction 

The increasing complexity in products and processes push companies to invest in a wider range of technologies over time 
and diversify their technological base (Granstrand & Sjölander, 1990; Cantwell and Piscitello, 2000; Breschi et al., 2003). 
Technological diversification refers to the firm capability to combine and recombine accumulated knowledge into new 
ideas and expands the existing technological competencies across different technological fields (Garcia-Vega, 2006; 
Quintana-Garcia and Benavides-Velasco, 2008; Corradini et al., 2016). In imperfectly competitive markets, firms can 
protect from the risk of imitation by diversifying their technological base and becoming less vulnerable to economic 
depreciation and obsolescence phenomenon. 
According to the organizational learning theory and knowledge-based arguments, technological diversification can feed 
firm innovativeness and push for more R&D investments, stimulating novel methods, materials and solutions and 
accelerating the rate of invention, avoid a lock-in effect in a particular technological specialization and promote gains in 
economies of scope (Granstrand and Oskarsson, 1994; Garcìa-Vega, 2006; Quintana Garcìa and Benavides-Velasco, 
2008; Cincera and Ravet, 2014). Furthermore, technologically diversified companies can achieve economy of scale 
lowering the R&D average costs, exploit learning and experience curve effects and take advantage of speed in R&D 
(Cantwell and Piscitello, 2000).  
Technological diversification can occur in related technological fields, when new technologies, sharing principles of 
proximity, commonality, and complementarity of knowledge with the previous ones, are recombined through a cross-
fertilization process (Breschi et al., 2003), while unrelated technological diversification can be attained by combining 
knowledge domains that were previously unconnected.  
Whereas an extensive theoretical and empirical literature has studied the impact of technological diversification on 
corporate performance and innovation output (Granstrand, 1998; Gambardella and Torrisi, 1998; Garcìa-Vega, 2006; 
Miller, 2006; Leten et al., 2007; Quintana Garcìa and Benavides-Velasco, 2008; Chen et al., 2012; Appio et al., 2019; 
Choi and Lee, 2021), little is known yet about the determinants of technological diversification. A limited number of 
studies has investigated how the R&D organizational structure of multinational companies could impact the technological 
diversification, in particular considering the R&D internationalization (Cantwell and Piscitello, 2000; Le Bas and Patel, 
2005) and intra-firm R&D networks such as the strength of ties between inventors (Cecere and Ozman, 2014) and the 
presence of international inventor teams (Damioli et al., 2023). We aim to contribute to this current scant literature by 
investigating the role of the geographic distribution of cross-border placed inventive activities in shaping the technological 
diversification patterns of top R&D multinationals across related and unrelated fields. Indeed, despite there is empirical 
evidence showing that the international expansion of leading R&D performers can enhance their R&D productivity 
(Cincera and Ravet, 2014), productivity levels (Castellani et al., 2017), product diversification and international 
performance (Tang et al., 2019), innovation output (Iwasa and Odagiri, 2004; Singh, 2008; Lahiri, 2010; Nieto and 
Rodriguez, 2011; Rahko, 2016; Zhang et al., 2019; Wen and Zheng, 2020), its impact on technological diversification has 
still been neglected so far.  
In line with a consolidated approach used in IB research (Kafourous et al., 2012; Castellani et al., 2017; Tang et al., 2019), 
we distinguish between the breadth and depth in the geographic distribution of foreign based inventive activities: breadth 
pertains to the extent to which companies disperse the R&D activities across multiple foreign locations, whereas depth 
dimension relates to how intensely companies concentrate their efforts in each foreign location where R&D activities are 
placed. These two different aspects characterize together the geographic scope of R&D portfolios across different 
locations and within each of them. Building on the concept of multiple embeddedness of the geographically dispersed 
companies (Meyer et al., 2011), we suggest that spreading R&D activities can be a means through which to diversify the 
patent portfolio: the spatial distribution of innovative activities entails the absorption of globally dispersed knowledge 
and can lead to new combinations, promoting cross-fertilization across different technological fields (Wen and Zheng, 
2020). Hence, as starting point of this work, we hypothesize that companies that distribute R&D activities across foreign 
markets can benefit in terms of increasing innovation capacity and appropriability from a larger and more diverse pool of 
knowledge, borrowing and exploiting new ideas, know-how and technologies from the different contexts in which they 
are embodied (Kafouros et al., 2008). Conversely, the depth dimension should weaken companies' ability to diversify 
their patent portfolios as it may be associated with the access to and exploitation of limited globally dispersed knowledge.  
We also want to investigate whether the technological dissimilarity of multi-technology companies with their foreign 
R&D host locations, that is the difference in their technological bases, can affect their diversification of patent portfolio. 
This analysis provides an original contribution to the literature that lacks in studying how the contextual factors related 
to the host locations could enhance firms' ability to diversify their technological base. We argue that increased 



Preliminary draft not to be quoted.  

 

 3 

technological dissimilarity with host locations, i.e. the gap existing in their technology expertise, could encourage the 
corporate technological diversification as breaking the path of dependency of innovation process (Dosi et al. 1990) 
requires the absorption of knowledge that is relatively distant compared to the existing knowledge base (Dosso and 
Vezzani, 2015).  
Furthermore, we propose to investigate the role of some moderating forces. First, we question whether the technological 
dissimilarity with foreign host regions may play a negative moderating role between the breadth of international inventive 
activities and technological diversification as there could be high costs associated with absorbing knowledge from 
different locations with different technology base compared to that already available in the organization (Kafouros et al., 
2018). Besides, we investigate whether technological dissimilarity is expected to mitigate the adverse impact of the 
concentration of foreign inventive activities. Specifically, companies with greater technological dissimilarity relative to 
the host regions are likely to experience lower diminishing returns on their capability to diversify the technologies from 
the depth of foreign inventive activities. 
We estimate these research questions through fixed-effects panel regression model, using a survey sample consisting of 
1,125 top R&D performers, which are mainly headquartered across the most developed OECD countries3 and have 
applied for 803,066 priority patent applications during the time period from 2000 to 2018 years. Starting from the 
technology vector of sample companies and exploiting the different levels of the technological classes defined by 
International Patent Classification (IPC) classification, we derive the entropy measure of technological diversification 
and distinguish between related and unrelated diversification. We capture the breadth and depth in the geographic 
distribution of foreign inventive activities considering respectively the number of foreign locations where R&D activities 
are placed (breadth) and the adjusted Herfindahl index as a measure of geographic concentration (depth). Then, we build 
a measure of technological dissimilarity relying on the angular separation measure between the companies and the foreign 
host locations vectors of patent shares across different technological fields. An additional novelty of this paper is also that 
of conducting a sub-national analysis: following the OECD territorial classification, we take into account the distribution 
of inventive activities across Territorial Level 2 (TL2) large regions where the sampled companies are based and where 
knowledge is created. Building upon the literature on economic geography (Jaffe et al., 1993; Audretsch & Feldman, 
2004; Iammarino and McCann, 2013), we assume that R&D facilities of multinationals could easily absorb knowledge 
and technology spillovers and benefit from agglomeration effects unfolding in the regional innovation system hosting 
them (Criscuolo et al., 2005; Cantwell and Piscitello, 2005). We observe that the breadth of foreign inventive activities 
across different geographic locations encourages organizations to diversify into both related and unrelated technological 
fields while the depth discourages it. Secondly, as expected, our results show that technology dissimilarity with R&D 
host locations fosters the corporate technological diversification. Last, there is a negative/positive moderating role of 
technological dissimilarity in the relationship between breadth/depth of foreign inventive activities and technological 
diversification. Furthermore, significant differences emerge when we split our sample between frontier and laggard 
companies with respect to their main industrial competitor. The paper is organized as follows. In Section 2, we establish 
the theoretical framework and develop the research hypotheses. Section 3 proceeds with the description of data and the 
methodology applied. Our findings are detailed in Section 4, while Section 5 provides additional checks and robustness 
estimates. The last Section concludes with a general discussion on the main findings, contributions, implications and 
limitations of the analysis and future research.  

2. Theoretical framework and research hypotheses development 

2.1 Related and unrelated technological diversification 

The diversification of corporate technological activity can be defined as the firm ability to extend technological 
competence into a broader range of technological areas (Granstrand and Oskarsson, 1994). Technological diversification 
allows companies to enhance their absorptive capacity and resilience in the face of disruptive technological changes 
incentivizing their long-term survival capability and may allow to enter more easily into a new technological domain, 
avoiding the negative lock-in effect in single and less profitable technologies (Kim et al., 2021). According to knowledge-
based view, adopting technological diversification strategies allows companies to experience a growth in their 
innovativeness (Wen and Zheng, 2020) and expand upon the knowledge and principles that inform both their products 

 
3 Top R&D performers from Asian countries have been excluded from this study due to their limited representation in the sample and 
potentially different technological characteristics compared to those headquartered in the EU and US, as they are highly specialized in 
ICT technologies (Dernis et al., 2015). 
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and production methods (Appio et al., 2019). Through the exploitation of the experience curve and learning effects, 
technologically diversified firms can effectively reduce average R&D costs while simultaneously enhancing their 
technological knowledge. Additionally, the integration of various technologies, known as the cross-fertilization effect, 
facilitates the development of new and revolutionary innovations across a wide spectrum of technological domains 
(Garcìa-Vega M., 2006; Quintana-Garcia and Benavides-Velasco, 2008; Chen et al., 2012). 
 Related technological diversification occurs when companies exploit the cross-fertilization effect across related 
technology fields grounded in common scientific principles (Chen et al., 2012). This strategy not only enables firms to 
enhance their R&D competencies by learning from related technological domains but also reduces R&D unit costs 
through economies of scale and take advantage of speed in R&D (Cantwell and Piscitello, 2000). Furthermore, it 
facilitates R&D support across various related technological domains due to the interconnected knowledge base (Breschi 
et al. 2003; Miller 2006; Chen et al., 2012).  
It is well-established that firms are more likely to diversify technologies in related fields rather than unrelated ones, 
primarily due to the significant transaction and information costs associated with unrelated technological diversification, 
that could outweigh the benefits (Breschi et al., 2003; Chen et al., 2012). Since it is beyond the scope of the paper to 
discuss about the trade-off that exists between related and unrelated technological diversification, we want to focus 
attention on both the strategies. Indeed, our sample consists of large top R&D performers who have fewer constraints on 
facing the higher costs of unrelated technological diversification, compared to small and medium-sized enterprises that 
could be more likely to develop related technological capabilities (Corradini et al., 2016).  

2.2 The impact of breadth and depth in the geographic distribution of foreign inventive activities on 
technological diversification 

While technological diversification has been acknowledged as a significant characteristic of large multinational 
corporations with extensive technology portfolios (Zander, 1997; Zander, 1999; Leten et al., 2007), the innovation 
generation process of multinationals increasingly stems from their cross-border knowledge-generating activities (Dunning 
and Lundan, 2009). The extensive embedding of multinationals in different local contexts (Meyer et al., 2011) implies 
that the geographic spread of inventive activities can be regarded as a source of technological diversification: the benefits 
related to innovation in geographically dispersed R&D subsidiaries can extend to the parent company and have 
implications on the corporate technological diversification. Indeed, extensive research indicates that companies expanding 
their research activities across different locations can leverage the cross-fertilization of ideas through knowledge 
spillovers among subsidiaries and parent companies, leading to increased innovativeness (Almeida and Phene, 2004). The 
rationale behind this strand of literature is that companies, absorbing and integrating knowledge from their R&D units 
located in various geographic sites, can manage to combine existing knowledge and ideas with local knowledge of host 
locations to create novel combinations and further innovation (Singh, 2008). Hence, we support the idea that globally 
distributed R&D subsidiaries can operate as a source and vehicle of knowledge and technology by leading parent 
companies towards more exploratory paths of recombinant knowledge through intra MNEs and inter-unit knowledge 
sharing and transferring mechanism (Zhang et al, 2019). Based on this outlined framework, it can be assumed that R&D 
distant units, connecting the knowledge and competences of the host context with the internal network of MNEs (Dunning 
and Lundan, 2009), exert positive spillovers effects to their headquarters and other affiliates facilitating the knowledge 
recombination and the development of new technologies. Few studies have specifically addressed the dimension of 
technological diversification for companies that leverage knowledge and technologies from multiple sources. A notable 
exception is a recent study by Damioli et al. (2023). Analyzing a large sample of 454 multinational enterprises over the 
period 2007–2014, they have provided evidence for a positive association between the involvement of international 
inventor teams and both related and unrelated technological diversity. This paper complements this research as we want 
investigate the potential role of a greater R&D international expansion, i.e. the breadth in the geographical distribution of 
foreign inventive activities, in shaping the technological diversification across related and unrelated technological 
domains. We aim to address empirically this issue by testing the following hypothesis:  

H1.a The international breadth of inventive activities promotes the corporate technological diversification of top R&D 
performers. 
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Conversely, the previous arguments lead us to assume that, as companies increase the concentration of foreign related 
inventive activities, i.e. the depth in the geographical distribution of such activities in foreign locations, the internal 
knowledge of the MNEs organization can become more bounded to that of a few foreign locations, thereby limiting their 
capability to access, integrate and recombine diverse external sources of novel knowledge. In other words, leveraging 
more in-depth R&D foreign activities can incentivize the path dependency of innovation and the technological 
specialization, reducing the diversification capabilities. Hence:  

H1.b The international depth of inventive activities discourages the corporate technological diversification of top R&D 
performers. 

2.3 The impact of technological dissimilarity with foreign R&D host locations on technological 
diversification  

While prior research has focused largely on the determinants of technological diversification relying only on the 
organizational attributes of companies, we want to analyze to what extent context-related factors can affect it. 
Technological diversification can be determined not only by specific firm and industry characteristics that can push for 
the exploration of new technological opportunities (Pavitt et al. 1989), but also by contextual factors associated with the 
specific context in which the R&D units are locally embedded. Indeed, according to the knowledge-based theory, 
companies can be seen as “open system” that incorporate internal and external sources of knowledge. The benefits of 
geographical distribution of inventive activities across different locations may be contingent on to the distinct knowledge 
base that the company can access by locating the R&D unit in a specific location. The spillovers unfold upon 
demonstration effects, targeted knowledge searches, reverse engineering, employee mobility, collaborative agreements, 
and various other forms of inter-organizational interaction (Audretsch and Feldman, 1996; Kafourous et al., 2018). 
Therefore, we propose that the technological dissimilarity with target locations, that can be reflected into the different 
background of knowledge, competences, resources and technologies, may impact the firm ability to reach and exploit 
diverse ideas, skills and competences. Thanks to their proximity to the locations where certain technologies are developed, 
R&D employees can promptly recognize their potential and comprehend their underlying rationale by engaging in 
innovation practices specific to those locations (Nieto and Rodriguez, 2011). The local knowledge assimilated from the 
host context differs from the type of knowledge already integrated in the organization, and it has the potential to expand 
the knowledge and technological capabilities of companies as the dissimilarity increases. The localization in contexts 
with a different technological base can lead the organization to tap into new and unexplored knowledge and recombine it 
with the existing knowledge. According to the arguments outlined above, we can hypothesize a positive relationship 
between technological dissimilarity with the foreign host locations and corporate technological diversification. Thus, we 
test the following hypothesis:  

H2. The technology dissimilarity with foreign R&D host locations promotes the corporate technological diversification 
of top R&D performers. 

2.4 The moderating effects of technological dissimilarity on the relationship between breath/depth of 
foreign inventive activities and corporate technological diversification 

Most of the empirical studies have tested the role of some internal corporate attributes in moderating the relationship 
between the geographic dispersion of inventive activities and the innovation performance of multinational corporations: 
while Singh (2008) gives evidence to the role of the cross-regional innovation knowledge sourcing, collaboration and 
mobility of inventors within multinationals in explaining such relationship, in a similar manner Lahiri (2010) emphasizes 
the importance of intra-organizational linkages between R&D units located at multiple network positions. Our 
contribution lies in examining how technological dissimilarity with foreign R&D host regions moderates the impact of 
geographical distribution of inventive activities, whether by expanding (breath) or concentrating (depth) them across 
various foreign locations, on corporate technological diversification. Although expanding inventive activities to diverse 
foreign locations should increase the possibility of exploring new knowledge trajectories, the literature suggests that the 
costs of international breadth may outweigh the benefits in terms of innovation (Lahiri, 2010; Alcácer and Zhao, 2012). 
We propose here that this effect may be contingent upon the negative moderating effect of technological dissimilarity 
with the host regions: greater international expansion of R&D locations that are more technologically dissimilar could 
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exacerbate the complexity associated with the management of diversity, thereby potentially reducing the marginal 
contribution of such diverse external knowledge to the firm’s capability to diversify their technological base. Moreover, 
it may overstretch the overall absorptive capacity of a firm by making the integration of global knowledge more 
challenging (Kafouros et al., 2018). Consequently, the gain in terms of technological diversification from leveraging 
distant external knowledge could diminish with an increasing number of foreign host R&D locations. This leads us to 
formulate the following hypothesis:  

H3.a The technological dissimilarity with foreign R&D host locations negatively moderates the positive effects of the 
international breadth of inventive activities on the corporate technological diversification of top R&D performers. 

Further, we propose that if the companies experience an increase of the international depth of inventive activities  in more 
technologically different contexts, they can exploit the opportunity to engage with the local actors of the host locations 
and concentrate their efforts on interacting with more heterogeneous and distant knowledge from that which already exists 
in their own organization, searching more deeply for novel combinations, as a result of a stronger embeddedness 
(Kafouros et al., 2012; Kafouros et al., 2018). Indeed, the exploitation of knowledge from each R&D host location can 
stimulate the efficiency in learning and adaptation processes and strengthen the overall absorptive capacity of companies 
leading to more exploration opportunities (Cohen & Levinthal, 1990). Therefore, we suggest that increasing levels of 
technology dissimilarity with foreign R&D host regions can positively moderate the relationship between the depth of 
foreign inventive activities and technological diversification, such that the threshold level after which the negative returns 
of depth on corporate technological diversification manifest will be lower. Hence: 

H3.b The technological dissimilarity with foreign R&D host locations positively moderates the negative effects of the 
international depth of inventive activities on the corporate technological diversification of top R&D performers. 

Based on the outlined theoretical background and research hypotheses developed, we design our research framework in 
the following figure (Fig.1).  

Figure 1 – Theoretical framework and research hypotheses development  

 

 

 

 

 

 

 
Source: Authors’ elaboration. 
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3. Data and empirical strategy 

3.1 Data description  

The main data source used for our study is the RISIS CIB/CinnoB dataset developed by Risis Core Facility, that collects 
data on about 2,000 worldwide largest R&D corporate performers, which are responsible of over 90% of world corporate 
industrial R&D. This database combines different firm-level information extracted from the Industrial R&D Investment 
Scoreboard (EU Commission), RISIS Patent database and ORBIS by Bureau van Dijk database (Laurens P., 2020). It 
releases data on the priority patent applications by applicants and inventor place of residence, applying in at least 2 of the 
5 largest IP offices in the world4. We employ a final dataset of 1,125 multinational companies with 803,066 priority5 
patent applications observed during the period 2000-2018 and headquartered mainly in Europe and North America. This 
sample of companies is very suitable for our analysis as they are considered as world-leading corporate innovators and 
have a multi-unit geographically dispersed organizational structure (Dernis et al., 2015). Rather than limiting the analysis 
at the country level, we are conducting a study at the sub-national level.  
Following the OECD territorial classification, we manually allocate our sample companies to Territorial Level 2 (TL2) 
regions (when this information is missing from the original data). The reason for adopting this strategy lies in the fact that 
adopting a granular approach can yield more benefits allowing to detect better how the specific local context in which 
firms are located can influence corporate dynamics and patterns of technological diversification. Further, the strong 
regional disparities in the localization of knowledge within and between the countries under investigation are well known 
and aggregating the analysis at the national level results in the loss of this heterogeneity. We capture when an invention 
originates from a different location than the one where the parent company is headquartered. The headquarters are 
primarily located in a relatively small set of few sub-national regions, mainly in the United States (27%) and Germany 
(9%). We plot the spatial distribution of R&D units where the inventive activities take place across of the entire sample 
of companies, over the period covered: we can see that they are strongly concentrated in few regions of the United States 
and in some European countries such as Germany, Great Britain, France and Netherlands (see Figure 1 below). We can 
observe a clear overlap between the number of R&D units and the number of patents in each hosting region over the 
period under analysis (see Figure 2 below). 

Figure 1 – Spatial distribution of the total number of R&D units across host locations (OECD TL2 regions)  

 
Note: The values have been divided based on quantile distribution (5 classes).  
Source: Authors’ elaboration. 
 

 
4 The five offices, known as the IP5, are the European Patent Office (EPO), Korean Intellectual Property Office (KIPO), Japan Patent Office (JPO), 
China National Intellectual Property Administration (CNIPA) and United States Patent and Trademark Office (USPTO). 
5 The priority date corresponds to the first filing of an application for a patent. 
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Figure 2 – Spatial distribution of total number of patent applications across host locations (OECD TL2 regions) – average values for 
2000-2018 years 

 

Note: The values have been divided based on quantile distribution (5 classes).  
Source: Authors’ elaboration. 
 
 
3.1.1 Dependent variables 

In line with the most relevant literature (Palepu, 1985; Granstrand and Oskarsson, 1994; Zander, 1997; Appio et al., 2019), 
we use the so-called Jacquemin-Berry entropy indicator to capture the level of corporate diversification of patent portfolio. 
The entropy-based measure appears to be the most suitable indicator to assess the within-group variance and for 
distinguishing between related and unrelated diversification (Chen et al., 2012; Damioli et al., 2023). This paper adopts 
the same methodology outlined by Chen et al. (2012) to compute the entropy measure of technological diversification 
and split it into related and unrelated technological diversification. Taking in account the distribution of patent vectors by 
IPC grouped technological classes of our sample companies, the first step entails the calculation of the technological 
diversification as follows:  

TECH_DIV!,# =*𝑃$

%

$&'

∗ ln	(1/𝑃$) 

where Ps is the share of patents in each technical field s, out of the K total ones, by IPC sub-classes (at 4-digits level). 
Then, we calculate the unrelated technological diversification:  

UT_DIV!,# =*𝑃(

)

(&'

∗ ln	(1/𝑃() 

where Pk is the share of patents in each technical field k, out of the M total ones, by IPC classes (at section level). 

Since technological diversification is the sum of related and unrelated diversification, we derive the related diversification 
in this way: 

RT_DIV!,# = 𝑇𝐸𝐶𝐻_𝐷𝐼𝑉*,+ −	𝑈𝑇_𝐷𝐼𝑉*,+ 

These indicators range from zero to infinity. The 𝑇𝐸𝐶𝐻_𝐷𝐼𝑉*,+ indicator assumes a value equal to 0 when a company 
focus on both related and unrelated diversification, while it approaches infinity whether it spreads across various related 
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or unrelated patent classes. 𝑈𝑇_𝐷𝐼𝑉*,+ takes value of zero when a company focus on one unrelated patent class, infinite 
values when diversifying the portfolio across various unrelated patent classes. 𝑅𝑇_𝐷𝐼𝑉*,+ equals 0 if the company’s patent 
portfolio concentrates on a single related patent class and it tends to infinity when the company the company’s patent 
portfolio spreads across different related patent classes (Chen et al., 2012).  

3.1.2 Explanatory variables 

The focal regressors of our analysis are given by the geographical dispersion (breadth) and concentration (depth) of 
inventive activities across different foreign R&D active locations and the technology dissimilarity with them. Following 
prior research (Kafourous et al., 2012; Castellani et al., 2017; Tang et al., 2019), we measure the international breadth of 
inventive activities using the total number of foreign host locations taking into account the inventor place of residence of 
patent applications6 (INT_BREADTH!,#). We use the common Herfindahl-Hirschman index as a measure of concentration 
to calculate the international depth of inventive activities and adjust it using the bias correction (N/N- 1) to consider that 
this indicator could be distorted when companies place their inventive activities in few locations (Hall, 2005). 

INT_DEPTH!,# =*𝑃,- ∗ D
𝑁

𝑁 − 1F
.

,&'

 

Where Pr is the share of patents to inventors in a given location r and N is the total number of foreign host locations from 
which patents originate. This indicator takes on values between 0 and 1 and it is higher the more geographically 
concentrated the patent portfolio of each company is. Lower values of the indicator suggest that the patent portfolio is 
more dispersed across different host locations.  
We rely on the angular separation measure introduced by Jaffe (1986) to capture to what extent the companies and foreign 
host regions differ in their technological base. We first calculate the cosine of the angle, that is the uncentred correlation 
coefficient, between the technology vector of patent distribution of companies and that of each region from which 
inventions are drawn: 
 

ANG_SEP!,/01# 	= 	
∑ (𝑃2,* ∗ 	𝑃2,34$+).
2&'

J∑ 𝑃2,*-.
2&' ∗ 	∑ 𝑃2,34$+-.

2&' 	
 

Where 𝑃2,* and 𝑃2,34$+ indicate the share of patents within each c technological field, as defined according to the Schmoch 
classification based on 35 grouped technological domains7. This indicator ranges between 0 and 1: when 
𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑆𝑒𝑝*,34$+ = 0,	there is orthogonality between the two vectors, indicating the complete technology dissimilarity 
between firm and each R&D host region; in the opposite case (𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑆𝑒𝑝*+ = 1), the two vectors overlap, resulting 
that the pair of units have the same identical position in the technological space. The advantage of using this symmetric 
measure is that of considering whether the two vectors align in the same direction while also adjusting for vector length 
based on the number of total patents within that dimension. This ensures also that its computation is not affected by a 
greater dimension of technology vectors (Jaffe, 1986). Then, for each company i, we calculate the average angular 
separation, considering all the regions where the inventive activities take place in each year. Additionally, as our focus 
lies in identifying the technological dissimilarity with foreign R&D active locations, we derive the inverse of this indicator 
as follows:   

TECH_DISS!,# 	= 	1 − W
∑ 𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑆𝑒𝑝*,34$+	.
,&'

𝑁 	X 

 
Where N is the total number of R&D active (sub-national) regions where knowledge is created.  
 

 
6 Given that multinational corporations are used to apply for patents in their headquarters, we don’t rely on the location of applicants. 
7 We employed the World Intellectual Property Organization (WIPO) concordance table linking the IPC classes to the 35 technological fields outlined 
by Schmoch's classification in order to identify them. Refer to Appendix – Section A for more details on this classification. The implementation of this 
taxonomy makes more suitable the comparison of knowledge bases across diverse geographical entities (Schmoch, 2008). 
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3.1.3 Controls 

We need to control for firm-level attributes that can affect the corporate technological diversification.  

R&D intensity. Since R&D represents the key input to the innovation process (Pakes and Griliches, 1984), we add the 
R&D intensity of companies as the R&D expenditure over the total assets (in thousands of euros) (Miller, 2006; Wen and 
Zheng, 2020). Missing values are replaced with zeros, and a dummy variable is introduced to flag these observations 
(Singh, 2008; Rahko, 2016). 

Number of employees. The (log-transformed) number of employees is a proxy for the size of the firm (Singh, 2008): : we 
anticipate it to positively influence technological diversification. 

Production value. The production value of companies, expressed in logarithm, concerns the sales of goods and services 
and changes in stock. Greater resources could fuel innovation and push for greater inventions in different fields. 

Return on Asset (ROA).The Return on Asset (ROA) after taxes measures the profitability of a companies, given by the 
net income in relation to their total assets. 

Patent stock. The (log-transformed) number of total patents accumulated by the companies in the previous year serves as 
a proxy of their knowledge stock (Corradini et al., 2016) and to account for experience curve effects.  

Technological internationalization. We control for the level of technological internationalization, that has been proven to 
be a leading factor for the corporate technological diversification (Cantwell and Piscitello, 2000; Rahko, 2016) including 
the share of international patents on the total ones of their portfolio. We retrieve this information by looking at the 
residence of inventors and applicants for each patent application in order to discern when they have or don’t have the 
same nationality of the headquarter.  

Intra-organizational linkages. Collaboration and connections within an organization could incentivize the sharing and 
transfer of knowledge, facilitating the exploration of novel inventions (Lahiri, 2010). We proxy the strength of intra-
organizational linkages by the (log-transformed) number of co-patent applications that result from the collaboration 
between different R&D units.  

3.1.4 Descriptive statistics 

In the Appendix – Section B we report the descriptive statistics of the variables used in our empirical analysis (Table B2). 
On average, the companies included in our sample show higher values of related technological diversification compared 
to unrelated one. Additionally, their inventive activities are intensely dispersed geographically. The technological 
dissimilarity with R&D host locations is relatively small, with an average index of 0.35. Furthermore, regarding specific 
firm characteristics, our sample consists of large and profitable companies, with an average workforce of around 34 
thousands of employees, a high production value averaging about 11 millions of euros and average ROA (net) of around 
3%. They exhibit a wide innovation capacity, with an average of 670 patents accumulated. Moreover, a significant portion 
of the sample have a high share of international patents out of the total ones, and on average, there are 7 co-patented 
patent applications per company. The share of patents from foreign locations stands on average at 0.5. In the Appendix – 
Section B we also include the correlation matrix (Table B3) and correlation plots that show the linear relationship of the 
technological diversification variables and our exploratory variables (Figure B4-B5-B6). 

3.2 Empirical strategy 

In our empirical analysis, we employ a two-way fixed-effects panel regression with unit and time fixed effects in order to 
test empirically the relationship between the international breadth and depth of inventive activities and corporate 
technological diversification (H1), as specified by the following equation, in which the dependent variable Y!,#varies based 
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on whether we're examining the overall technological diversification (TECH_DIV!,#), related (RT_DIV!,#) or unrelated 
(UT_DIV!,#) diversification.  

Y!,# =	β'[INT_BREADTH!,#5'\ + β-(INT_DEPTH!,#5') + 	φ(X′!,#5') + γ! + δ# + 	ε!,#							(1) 

Where i indicates firms in our sample (i= 1…1,125), and t accounts for our time span of 2000-2018 years. X′!,#5',	is a 
vector of control variables that encompass several corporate characteristics, as discussed above, 𝛾* and 𝛿+ stand 
respectively for firm and year fixed effects, accounting for firm-level and time-variant unobserved features. Then, on the 
right-side of our equation, we include the technological dissimilarity with foreign host locations (TECH_DISS!,#5') in 
order to test its impact on the corporate technological diversification (H2). Ultimately, the inclusion of interaction terms 
serves to examine to what extent the technological dissimilarity can play a moderating role in the relationship between 
the international breadth/depth and technological diversification (H3). All the regressors are lagged by one year in order 
to mitigate the potential reversed causality and unobserved heterogeneity.  

4. Results 

In this section, we report the results of our empirical analysis, running fixed-effect panel regression model on different 
specifications for our dependent variables of overall (Table 1), related (Table 2) and unrelated (Table 3) technological 
diversification. First, in each model specification, we include our proxy for the international breadth of inventive 
activities, that is the total number of foreign R&D host locations. We obtain that the coefficient estimated is positive and 
significant at 1% level: as expected, the dispersion of patents across different foreign host locations affects positively and 
significantly the capability of companies to diversify their technologies, both in related and unrelated domains. Then, we 
test the impact of international depth of inventive activities, and the results lead us to confirm that a greater concentration 
of patent portfolio discourages the technological diversification. So, we can largely confirm our first research hypothesis. 
We introduce our last focal regressor of technological dissimilarity of companies with R&D host regions. In line with the 
second research hypothesis, the positive and significant coefficient across all the models strongly supports the existence 
of a positive relationship between technological dissimilarity and technological diversification. Finally, in the last two 
columns of our model specifications we add the interaction terms respectively between the international breadth/depth of 
inventive activities and technological dissimilarity, in order to assess the role of the technological dissimilarity in 
moderating the effects of international breadth/depth on technological diversification (H3). The coefficient of the 
interaction term between international breadth and technological dissimilarity is negative and statistically significant at 
1%. As we formulated in our third hypothesis, there is a negative moderating effect of technological dissimilarity in the 
relation between international breadth and corporate technological diversification. Firms dispersing inventive activities 
across more dissimilar locations tend to achieve lower positive returns in technological diversification performance as the 
number of foreign host locations increases (Figure 3). Testing the potential role of technological dissimilarity in shaping 
the direction of the relationship between international depth and technological diversification, we obtain mixed evidence 
across the different models. We find that a greater technological dissimilarity with host locations can mitigate the negative 
impact of international depth on the overall technological diversification, even though the effect is slight, as indicated by 
the coefficient of the interaction term being positive and significant at the 10% level. While this effect does not hold when 
testing the related diversification, it emerges with a statistical significance level of 5% in the case of unrelated 
diversification. This evidence leads us to only partially confirm our last hypothesis, but also to interesting insights: a 
higher technological dissimilarity with the host regions, combined with a greater exploitation of such locations, allow 
companies to diversify into unrelated technological fields rather than in related ones. Figure 4 suggests that higher levels 
of technological dissimilarity with host locations augment the effect of international depth standing at low degrees and 
mitigate the negative impact of high levels of international depth. Regarding the other regressors included in the 
specifications, we have found others interesting results. While the R&D intensity influence positively and significantly 
the overall and related technological diversification, it has no effect on the unrelated technological diversification. 
Conversely, production value has a positive and significant impact only on the capability of companies to diversify into 
unrelated technological fields. The firm size, proxied by the number of employees is positively and significantly 
associated with the overall capacity to diversify technologies, and specially into related domains. The profitability of 
companies, captured by the ROA indicator, doesn’t seem to affect the corporate technological diversification as its 
estimated coefficient does not hold statistical significance from 0 across all the specifications. As expected, the stock of 
patents has a positive and strong effect on corporate technological diversification. Surprisingly, we discover that the 
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corporate technological diversification is negatively affected by a greater share of international patents, which retains a 
negative sign and high statistical significance across all the specifications8. Last, there is not a clear and distinct direction 
in the relationship between corporate internal collaboration and technological diversification as the estimated coefficient 
doesn't remain statistically significant across all specifications. This is particularly evident whether the number of foreign 
host locations is included in the specifications, meaning that the international breadth can explain the variability of the 
phenomenon under analysis to a greater extent rather than the collaboration within the organization. 

Figure 3 – Moderating effect of technological dissimilarity on the linear relationship between technological diversification and 
international breadth   

  

 
(c) Unrelated 

Note: Low technological dissimilarity is defined as one standard deviation below the mean, Medium as the mean, High technological dissimilarity as 
one standard deviation above the mean.   
Source: Authors’ elaboration. 
 

 

 

 
8 Following Castellani and Pieri (2013), we compute the share of foreign patents out of the total ones above which the marginal effect 
on technological diversification is negative, finding evidence that it manifests when the share is above the 75th percentile of the 
distribution. This suggests that few firms in the sample should experience negative returns from higher technological 
internationalization. It should be subject to further investigation. 

(a) Overall (b) Related 
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Figure 4 – Moderating effect of technological dissimilarity on the linear relationship between technological diversification and 
international depth   

 

 
(c) Unrelated 

Note: Low technological dissimilarity is defined as one standard deviation below the mean, Medium as the mean, High technological dissimilarity as 
one standard deviation above the mean.   
Source: Authors’ elaboration. 

4.1 Additional estimates and robustness checks 

Drawing insights from various research contributions (Cantwell and Kosmopoulou, 2001; Almeida and Phene, 2004), we 
want further to explore to what extent firm heterogeneity can affect our findings. We seek to investigate the debated 
question of whether technologically more advanced firms might be better positioned to assimilate knowledge spillovers 
from dispersed R&D locations and explore new patterns of innovation, or whether less advanced ones might be more 
inclined to capitalize on the resources available in their host locations in order to bridge their technological gap. We first 
define the technological frontier as the technological level of companies relative to their main competitor operating in the 
same industry in order to distinguish between firms that are close to or lag behind it. Indeed, we calculate the distance to 
the technology frontier as the distance of the innovation output between firm i and the best/worst performing in the same 
field9. We split the sample based on a dummy variable that captures when firms have a distance to frontier score from the 
technological frontier greater or less than the median of the distribution. We find that our main results are driven by 
“frontier” firms, which operate closer to or at the technology frontier (see Table 4) compared to the “laggards” firms (see 

 
9 Proceeding with the methodology outlined by World Bank to compute the economy’s distance to frontier score (2014), we calculate 
the distance to frontier indicator for each sample company employing this formula: (worst - Total_patents) / (worst - best), where worst 
and best are respectively the lowest and highest level of innovative output defined for each industry. This indicator takes a value 
between 0 and 1: the closer it is to 1, the more the firm is able of to catch up with the technological frontier.  

(a) Overall (b) Related 
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Table 5). We can observe that the positive relationship between international breadth of inventive activities and corporate 
technological diversification holds true for both the sub-samples. However, the international depth of inventive activities 
does not affect significantly the technological diversification of laggards. We also find that greater international depth in 
regions with a more dissimilar knowledge base has a positive and significant effect on the overall and unrelated 
diversification only among the frontiers (with even greater significance and magnitude compared to the results obtained 
from models estimated across the entire sample). This evidence suggest that absorptive capacity and innovative 
capabilities of companies play a fundamental role in enhancing their capability to take advantage of a greater diversity of 
R&D host locations. Furthermore, we assess the robustness of our baseline model by excluding US based companies, 
representing half of the sample, that might introduce bias into our findings (Damioli et al., 2023) but our main results 
persist largely10. (see Appendix - Section C – Table C1). Our results remain largely robust when lagging all our focal 
regressors and control variables by two years in our baseline estimation in order to account for the delay in patenting 
following the learning process and subsequent R&D activities in geographically dispersed multiple R&D units (see 
Appendix. - Section D – Table C2). Last, following previous research (Lahiri, 2010; Corradini et al., 2016), we test our 
baseline specification using the inverse of the adjusted Herfindahl-Hirschman index as a proxy variable for the corporate 
technological diversification and our findings remain consistent (see Appendix. - Section D – Table C3).  

 

 

 

 
10Although we do not find support for the hypothesis of a moderating role of technological dissimilarity in the negative relationship 
between international depth and technological diversification, leading us to assume that non-US headquartered multinational companies 
may not have the absorptive capacity necessary to acquire external knowledge when they concentrate their own efforts in a given host 
location. 
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Table 1 – Baseline: the impact of international breadth and depth and technological dissimilarity with foreign host regions on the overall technological diversification 

Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
 

 (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIVi,t TECH_DIVi,t TECH_DIVi,t TECH_DIVi,t TECH_DIVi,t TECH_DIVi,t 

INT_BREADTHi,t-1 

 IINT_DEPTHi,t-1 

 
0.0164*** 
(0.00223) 

 
 
 

-0.0879*** 

  
0.0117*** 
(0.00215) 

-0.0519*** 

 
0.0416*** 
(0.00509) 
-0.0317** 

 
0.0125*** 
(0.00213) 

-0.0796*** 
 
TECH_DISSi,t-1 

 (0.0121)  
0.398*** 

(0.0123) 
0.294*** 

(0.0124) 
0.427*** 

(0.0215) 
0.352*** 

INT_BREADTHi,t-1 *TECH_DISSi,t-1 

IINT_DEPTHi,t-1*TECH_DISSi,t-1 

  (0.0509) (0.0509) (0.0590) 
-0.0506*** 
(0.00824) 

(0.0632) 
 
 

0.0909* 
(0.0486) 

RD_INTENSi,t-1 0.289* 0.318** 0.322** 0.289* 0.300* 0.293* 
 (0.162) (0.160) (0.156) (0.158) (0.154) (0.158) 
Dummy(RD_INTENSi,t-1) -0.000763 0.00112 0.00639 7.72e-05 -0.00406 0.000775 
 (0.0555) (0.0550) (0.0553) (0.0534) (0.0525) (0.0534) 
Log(EMPLOYEESi,t-1) 0.0501*** 0.0547*** 0.0567*** 0.0447*** 0.0428*** 0.0455*** 
 (0.0173) (0.0176) (0.0176) (0.0167) (0.0165) (0.0167) 
Log(PROD_VALUEi,t-1) 0.0180 0.0171 0.0179 0.0167 0.0175 0.0166 
 (0.0110) (0.0110) (0.0113) (0.0108) (0.0107) (0.0108) 
ROA_NETi,t-1 0.000452 0.000667 0.000675 0.000448 0.000446 0.000448 
 (0.000589) (0.000599) (0.000601) (0.000595) (0.000593) (0.000595) 
Log(PAT_STOCKi,t-1) 0.0447*** 0.0564*** 0.0525*** 0.0386*** 0.0373*** 0.0387*** 
 (0.0130) (0.0133) (0.0133) (0.0128) (0.0128) (0.0128) 
TECH_INTi,t-1 -0.256*** -0.239*** -0.178*** -0.234*** -0.249*** -0.236*** 
 (0.0359) (0.0358) (0.0346) (0.0352) (0.0349) (0.0351) 
Log(CO_PATi,t-1) 0.0120* 0.0226*** 0.0204*** 0.00877 0.0111* 0.00900 
 (0.00709) (0.00717) (0.00709) (0.00695) (0.00667) (0.00694) 
       
Constant 0.923*** 0.840*** 0.752*** 0.897*** 0.853*** 0.875*** 

 (0.187) (0.193) (0.193) (0.182) (0.181) (0.183) 

Observations 10,818 10,818 10,818 10,818 10,818 10,818 
R-squared 0.818 0.817 0.817 0.819 0.820 0.819 
R-squared adj. 0.796 0.795 0.795 0.798 0.799 0.798 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 1125 1125 1125 1125 1125 1125 



Preliminary draft not to be quoted.  

 

 16 

 

Table 2 – Baseline: the impact of international breadth and depth and technological dissimilarity with foreign host regions on related technological diversification 
 

 (1) (2) (3) (4) (5) (6) 
VARIABLES RT_DIVi,t RT_DIVi,t RT_DIVi,t  RT_DIVi,t  RT_DIVi,t RT_DIVi,t 

INT_BREADTHi,t-1 
 

0.0135*** 
   

0.0102*** 
 

0.0268*** 
 

0.0104*** 
 (0.00176)   (0.00173) (0.00395) (0.00172) 
INT_DEPTHi,t-1  -0.0630***  -0.0327*** -0.0215** -0.0373** 
  (0.00888)  (0.00891) (0.00892) (0.0154) 
TECH_DISSi,t-1   0.310*** 0.228*** 0.302*** 0.238*** 
   (0.0362) (0.0360) (0.0429) (0.0441) 

INT_BREADTHi,t-1 *TECH_DISSi,t-1 
 

    -0.0280*** 
(0.00651) 

 

INT_DEPTHi,t-1* TECH_DISSi,t-1      0.0151 
      (0.0352) 
RD_INTENSi,t-1 0.153* 0.177** 0.180** 0.153* 0.159* 0.154* 
 (0.0856) (0.0864) (0.0851) (0.0837) (0.0829) (0.0836) 
Dummy(RD_INTENSi,t-1) -0.0436 -0.0417 -0.0378 -0.0428 -0.0451 -0.0427 
 (0.0360) (0.0371) (0.0377) (0.0359) (0.0354) (0.0359) 
Log(EMPLOYEESi,t-1) 0.0317** 0.0364*** 0.0375*** 0.0279** 0.0269** 0.0281** 
 (0.0134) (0.0137) (0.0139) (0.0130) (0.0128) (0.0130) 
Log(PROD_VALUEi,t-1) 0.00507 0.00452 0.00503 0.00413 0.00458 0.00412 
 (0.0101) (0.0101) (0.0102) (0.00994) (0.00982) (0.00994) 
ROA_NETi,t-1 5.18e-06 0.000190 0.000193 2.01e-06 9.12e-07 2.02e-06 
 (0.000398) (0.000406) (0.000405) (0.000398) (0.000396) (0.000398) 
Log(PAT_STOCKi,t-1) 0.0294*** 0.0398*** 0.0363*** 0.0248*** 0.0241*** 0.0248*** 
 (0.00878) (0.00922) (0.00906) (0.00865) (0.00864) (0.00865) 
TECH_INTi,t-1 -0.142*** -0.125*** -0.0794*** -0.124*** -0.132*** -0.124*** 
 (0.0259) (0.0257) (0.0249) (0.0253) (0.0252) (0.0253) 
Log(CO_PATi,t-1) 0.00654 0.0158*** 0.0138** 0.00411 0.00542 0.00415 
 (0.00542) (0.00568) (0.00563) (0.00532) (0.00516) (0.00532) 
       
Constant 0.502*** 0.427*** 0.362** 0.480*** 0.455*** 0.476*** 

 (0.140) (0.147) (0.147) (0.137) (0.136) (0.138) 

Observations 10,818 10,818 10,818 10,818 10,818 10,818 
R-squared 0.804 0.803 0.803 0.806 0.806 0.806 
R-squared adj. 0.781 0.779 0.780 0.783 0.783 0.783 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 1125 1125 1125 1125 1125 1125 

Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
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Table 3 – Baseline: the impact of international breadth and depth and technological dissimilarity with foreign host regions on unrelated technological diversification 

Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 

 

 (1) (2) (3) (4) (5) (6) 
VARIABLES UT_DIVi,t  UT_DIVi,t UT_DIVi,t UT_DIVi,t UT_DIVi,t UT_DIVi,t 
 
INT_BREADTHi,t-1 

 
0.00283*** 

   
0.00145* 

 
0.0147*** 

 
0.00211** 

 (0.000904)   (0.000875) (0.00264) (0.000871) 
INT_DEPTHi,t-1  -0.0248***  -0.0191*** -0.0102 -0.0419*** 

  (0.00706)  (0.00726) (0.00733) (0.0136) 
TECH_DISSi,t-1   0.0859*** 0.0635** 0.123*** 0.111*** 

   (0.0289) (0.0294) (0.0325) (0.0368) 

 INT_BREADTHi,t-1 * TECH_DISSi,t-1 
 

    -0.0224*** 
(0.00402) 

 

INT_DEPTHi,t-1 * TECH_DISSi,t-1      0.0746** 
      (0.0317) 
RD_INTENSi,t-1 0.138 0.142 0.143 0.138 0.142 0.140 

 (0.123) (0.122) (0.121) (0.122) (0.120) (0.122) 
Dummy(RD_INTENSi,t-1) 0.0428 0.0428 0.0441 0.0428 0.0410 0.0434 

 (0.0420) (0.0415) (0.0416) (0.0413) (0.0412) (0.0415) 
Log(EMPLOYEESi,t-1) 0.0179* 0.0178* 0.0188* 0.0163 0.0155 0.0170 

 (0.0104) (0.0105) (0.0104) (0.0104) (0.0105) (0.0105) 
Log(PROD_VALUEi,t-1) 0.0130** 0.0127* 0.0130** 0.0126* 0.0130* 0.0126* 

 (0.00658) (0.00658) (0.00660) (0.00658) (0.00666) (0.00658) 
ROA_NETi,t-1 0.000461 0.000490 0.000497 0.000460 0.000459 0.000460 

 (0.000382) (0.000382) (0.000383) (0.000384) (0.000384) (0.000384) 
Log(PAT_STOCKi,t-1) 0.0146* 0.0159** 0.0155** 0.0131* 0.0125 0.0132* 

 (0.00788) (0.00778) (0.00784) (0.00787) (0.00786) (0.00785) 
TECH_INTi,t-1 -0.111*** -0.111*** -0.0965*** -0.108*** -0.115*** -0.109*** 
 (0.0219) (0.0218) (0.0213) (0.0217) (0.0217) (0.0217) 
Log(CO_PATi,t-1) 0.00550 0.00684* 0.00667* 0.00475 0.00579 0.00494 

 (0.00361) (0.00353) (0.00353) (0.00359) (0.00354) (0.00358) 
       
Constant 0.428*** 0.420*** 0.397*** 0.424*** 0.405*** 0.406*** 

 (0.111) (0.111) (0.111) (0.110) (0.111) (0.111) 

Observations 10,818 10,818 10,818 10,818 10,818 10,818 
R-squared 0.681 0.681 0.681 0.681 0.682 0.682 
R-squared adj. 0.643 0.643 0.643 0.643 0.644 0.644 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 1125 1125 1125 1125 1125 1125 
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Table 4 – Additional checks – the impact of international breadth and depth and technological dissimilarity with foreign host regions on the overall, related and unrelated 
technological diversification in frontier firms 
  

Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
 

 (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIVi,t  TECH_DIVi,t  RT_DIVi,t  RT_DIVi,t  UT_DIVi,t  UT_DIVi,t  
       
INT_BREADTHi,t-1 0.0331*** 0.0103*** 0.0225*** 0.00875*** 0.0106*** 0.00154* 
 (0.00539) (0.00207) (0.00440) (0.00170) (0.00266) (0.000867) 
INT_DEPTHi,t-1 -0.0281* -0.101*** -0.0143 -0.0339 -0.0138 -0.0680*** 
 (0.0149) (0.0326) (0.0110) (0.0227) (0.00865) (0.0211) 
TECH_DISSi,t-1 0.385*** 0.349*** 0.285*** 0.212*** 0.102** 0.139*** 
 (0.0831) (0.0896) (0.0625) (0.0623) (0.0444) (0.0531) 
INT_BREADTHi,t-1 * TECH_DISSi,t-1 -0.0391***  -0.0229***  -0.0162***  
 (0.00893)  (0.00725)  (0.00405)  
INT_DEPTHi,t-1 * TECH_DISSi, t-1  0.154**  0.0272  0.128*** 
  (0.0657)  (0.0457)  (0.0436) 
RD_INTENSi,t-1 -0.216 -0.249 -0.0377 -0.0605 -0.178 -0.189 
 (0.436) (0.437) (0.337) (0.337) (0.168) (0.168) 
Dummy(RD_INTENSi,t-1) -0.0216 -0.0197 -0.0482 -0.0470 0.0265 0.0272 
 (0.0564) (0.0562) (0.0428) (0.0428) (0.0434) (0.0436) 
Log(EMPLOYEESi,t-1) 0.0676*** 0.0716*** 0.0466** 0.0482** 0.0213** 0.0237** 
 (0.0240) (0.0241) (0.0211) (0.0213) (0.0108) (0.0109) 
Log(PROD_VALUEi,t-1) 0.0246 0.0236 0.0188 0.0182 0.00560 0.00510 
 (0.0183) (0.0184) (0.0166) (0.0168) (0.00747) (0.00732) 
ROA_NETi,t-1 3.57e-05 5.94e-05 0.000289 0.000289 -0.000237 -0.000212 
 (0.000761) (0.000763) (0.000541) (0.000545) (0.000447) (0.000445) 
Log(PAT_STOCKi,t-1) 0.0346* 0.0360** 0.0196* 0.0204* 0.0142 0.0148 
 (0.0181) (0.0181) (0.0113) (0.0114) (0.0113) (0.0112) 
TECH_INTi,t-1 -0.263*** -0.250*** -0.141*** -0.131*** -0.118*** -0.115*** 
 (0.0561) (0.0568) (0.0420) (0.0424) (0.0336) (0.0334) 
Log(CO_PATi,t-1) 0.00783 0.00636 0.00525 0.00420 0.00269 0.00227 
 (0.00771) (0.00798) (0.00634) (0.00653) (0.00364) (0.00364) 
       
Constant 0.794*** 0.797*** 0.246 0.271 0.551*** 0.528*** 
 (0.300) (0.299) (0.229) (0.231) (0.156) (0.156) 
       
Observations 5,916 5,916 5,916 5,916 5,916 5,916 
R-squared 0.866 0.865 0.859 0.859 0.756 0.756 
R-squared adj. 0.849 0.848 0.842 0.841 0.725 0.725 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 627 627 627 627 627 627 
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Table 5 – Additional checks – the impact of international breadth and depth and technological dissimilarity with foreign host regions on the overall, related and unrelated 
technological diversification in laggard firms 
  (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIVi,t  TECH_DIVi,t  RT_DIVi,t  RT_DIVi,t  UT_DIVi,t  UT_DIVi,t  
       
INT_BREADTHi,t-1 0.0418*** 0.0274*** 0.0227** 0.0188*** 0.0188** 0.00841** 
 (0.0118) (0.00638) (0.00880) (0.00467) (0.00751) (0.00394) 
INT_DEPTHi,t-1 -0.0163 -0.0239 -0.0213 -0.0175 0.00452 -0.00665 
 (0.0195) (0.0286) (0.0148) (0.0213) (0.0129) (0.0195) 
TECH_DISSi,t-1 0.248*** 0.168* 0.139** 0.106* 0.105* 0.0588 
 (0.0937) (0.0906) (0.0641) (0.0614) (0.0579) (0.0573) 
INT_BREADTHi,t-1 * TECH_DISSi,t-1 -0.0381  -0.00909  -0.0284*  
 (0.0252)  (0.0187)  (0.0160)  
INT_DEPTHi,t-1 * TECH_DISSi, t-1  0.00896  -0.0240  0.0318 
  (0.0898)  (0.0668)  (0.0624) 
RD_INTENSi,t-1 -0.209*** -0.209*** -0.120*** -0.120*** -0.0882*** -0.0877*** 
 (0.0437) (0.0438) (0.0315) (0.0315) (0.0298) (0.0299) 
Dummy(RD_INTENSi,t-1) 0.419*** 0.421*** 0.173*** 0.173*** 0.247** 0.248** 
 (0.106) (0.105) (0.0645) (0.0646) (0.110) (0.110) 
Log(EMPLOYEESi,t-1) -0.0672 -0.0652 -0.0959 -0.0956 0.0285 0.0302 
 (0.115) (0.116) (0.0734) (0.0738) (0.0687) (0.0690) 
Log(PROD_VALUEi,t-1) 0.00992 0.0107 -0.00494 -0.00475 0.0146 0.0151 
 (0.0243) (0.0242) (0.0186) (0.0186) (0.0174) (0.0174) 
ROA_NETi,t-1 0.0122 0.0125 0.00111 0.00120 0.0116 0.0118 
 (0.0136) (0.0136) (0.0111) (0.0111) (0.00991) (0.00990) 
Log(PAT_STOCKi,t-1) 0.000654 0.000640 -0.000226 -0.000226 0.000900 0.000887 
 (0.000805) (0.000804) (0.000543) (0.000543) (0.000556) (0.000554) 
TECH_INTi,t-1 0.0361 0.0351 0.0220 0.0215 0.0133 0.0127 
 (0.0245) (0.0246) (0.0171) (0.0172) (0.0150) (0.0150) 
Log(CO_PATi,t-1) 0.0218 0.0207 0.0100 0.00968 0.0116 0.0108 
 (0.0147) (0.0148) (0.0107) (0.0106) (0.00868) (0.00868) 
Constant 0.967*** 0.983*** 0.636*** 0.643*** 0.333** 0.341** 
 (0.220) (0.218) (0.163) (0.162) (0.152) (0.152) 
       
Observations 4,728 4,728 4,728 4,728 4,728 4,728 
R-squared 0.691 0.691 0.651 0.651 0.586 0.586 
R-squared adj. 0.630 0.630 0.583 0.583 0.504 0.504 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 751 751 751 751 751 751 

Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration.. 



Preliminary draft not to be quoted.  

 

 20 

5. Discussion and conclusions  

5.1 Discussion on the main findings and contribution 

This paper contributes to the advancement of the existing literature in several ways. Firstly, we attempt to examine the 
factors influencing the corporate technological diversification, exploring both related and unrelated variety, an area that 
has received limited attention so far (Damioli et al., 2023). Building on the idea that the geographically dispersed structure 
of companies can act as a crucial technology transfer vehicle within the organization (Singh, 2008; Lahiri, 2010; Wen 
and Zheng, 2020), we distinguish between two dimensions of international expansion of inventive activities, breadth and 
depth, and discussing how each contributes to different stages of technological diversification. Using data on 1,125 
multinational companies, which are observed during the 2000-2018 years, our results confirm that dispersing the patent 
portfolio overseas enables a firm to gain proximal access to external knowledge pools across different locations, tap into 
diverse contexts and facilitating knowledge recombination (Singh, 2008; Lahiri, 2010). Conversely, a greater in-depth 
exploitation of host locations is associated with a lower ability to diversify the technological base. Additionally, to our 
knowledge, this is the first contribution that sheds light on how specific contextual factors, such as differences in 
knowledge and technology bases with R&D host regions, can influence the technological diversification performance of 
the leading innovative companies. We find that the dissimilarity from sources of new knowledge can affect positively the 
development of technological capabilities of companies. Additionally, our study addresses a current gap in understanding 
by examining the moderating influence of technological dissimilarity with host regions on the relationship between the 
geographic distribution of foreign inventive activities and technological diversification. First, the capability to enter into 
new technological domains is undermined when companies disperse inventive activities in an increasing number of 
locations and technological dissimilarity with them increases. We explain this evidence by arguing that the firm's 
absorptive capacity from multiple and dissimilar knowledge sources could be compromised with higher costs and 
complexity associated with it (Singh, 2008; Lahiri, 2010; Alcácer and Zhao, 2012). Furthermore, our results indicate that 
the technology dissimilarity with host regions helps companies to overcome the negative effects of the international depth 
of inventive activities, augmenting the opportunity to draw on and explore new knowledge from a greater exploitation of 
host locations (Kafouros et al., 2012; Kafouros et al., 2018), on technological diversification, especially in unrelated 
domains. Therefore, we offer empirical support for the well-established notion in the IB literature that companies can 
enhance their knowledge base by capitalizing on advantageous locations with distinct knowledge base (Le Bas and Patel, 
2005). However, while the technological dissimilarity with the host regions turns out to be an important predictor of 
corporate technological diversification, it can reduce the capability to absorb diverse and non-overlapping knowledge, 
compared to that already integrated in the organization, in the presence of a more dispersed geographical structure of 
R&D activities. Then, our results suggest that a more in-depth internationalization of inventive activities causes the firm 
to acquire redundant knowledge and does not increase technological diversification, but this effect can be mitigated when 
the firm localizes these activities in regions with a more distinct technological footprint. Multinational companies should 
take into account both the breadth and depth simultaneously and weigh the geographic distribution of patents against 
technological dissimilarity with foreign R&D host regions as these components could impact each other mutually in 
determining the possibility of diversifying the patent portfolio. Further, splitting the sample between frontiers and 
laggards, based on what extent they operate close to the technological frontier relative to their industry, our hypotheses 
are proved to be consistent for companies with higher innovative capabilities being better positioned to absorb external 
heterogeneous knowledge and connect it with internal knowledge (Cohen & Levinthal, 1990). Then, we state that internal 
absorptive capacity matters to ensure that companies are able identify and integrate external knowledge and exploiting 
the benefits from foreign-based inventive activities (Kafouros et al., 2012). 

5.2 Implications  

This study raises relevant implications for management practice and policy. From a managerial point of view, our research 
should provide useful insights for R&D managers on how to structure geographically the patent portfolio in a way that 
enhance their technological diversification. Indeed, our findings support the corporate decisions on R&D location choice: 
the adoption of vertical integration strategies of their foreign inventive activities needs to be aimed at leveraging the 
geographical expansion across diverse knowledge hubs thanks to the exploitation and absorption of local knowledge and 
technology spillovers. Multinational companies should identify ideal levels of international breadth and depth that 



Preliminary draft not to be quoted.  

 

 21 

optimize the technological diversification performance taking into account the distinct technological profile of the 
location to which they have accessed. Particularly, we suggest to consider the trade-off between the breadth and depth in 
the geographical distribution of inventive activities on the level of technological dissimilarity with the host regions. The 
greater exploration of foreign markets should incentivize technological diversification but the exploitation of host 
locations should be adopted when accessing a more technologically dissimilar location. However, we posit that 
strengthening the internal absorptive capacity and innovative performance is critical to achieve such outcome. Then, 
policy makers can obtain empirical support to design national incentive policies to push the most domestic advanced 
companies to distribute their R&D activities across diverse target locations in order to benefit from it in terms of national 
technological base upgrading, that is, to move forward the national technological frontier towards new specializations.  

5.3 Limitations and future research 

Future research should focus on explaining how external knowledge absorbed by geographically dispersed R&D units 
can effectively flow into the organizational network and lead to a break in the innovation process of companies, which is 
characterized by path-dependency and cumulative nature and constrained by organizational routine (Cohen and Levinthal, 
1990; Dosi et al. 1990). Indeed, this analysis is limited from the non-automatic nature of knowledge and technology 
transfer, even within the same organization: several obstacles can come into play, related to the tacit nature of the 
technological knowledge being transferred, the existing knowledge and the degree of absorptive capacity in the receiving 
unit as well as the motivation of the R&D units to share knowledge with other parts within the organization (Criscuolo, 
2003). Only a study that captures the flows of knowledge within the organisational network of companies and test how 
they contribute to corporate technological diversification could disentangle the mechanisms underlying the evidence 
presented in this paper.  

Turning to our future research agenda, an important robustness checks involves better addressing the estimation of the 
causal relationship between the corporate technological diversification and geographic distribution of inventive activities 
that entails endogeneity issues: firms that diversify their technology base may be more likely to expand their activities 
into more geographic sites to recoup their massive R&D investment efforts (Stephan, 1997). In addition, given that 
technological diversification affects learning behaviors, recombinant capabilities, and managerial efficiency (Garcia-
Vega, 2006), geographically dispersed companies may self-select to identify valuable external technologies from their 
host locations (Ardito et al., 2019). It must also be taken into account that unobservable characteristics can influence 
firms' decisions to geographically distribute their inventive activities and their ability to diversify their technological base. 
Applying specific econometric techniques, such as instrumental variable approach, Heckman two-step selection method 
and/or contrafactual identification strategies, could help to deal with the endogeneity problems in our analysis and provide 
for more robust estimates. This study also calls for further investigation into how specific characteristics of the host 
environment can influence firms' capacity to pursue new knowledge trajectories. Furthermore, this research neglects that 
external sources of knowledge to the organization, such as collaborations with external partners, can incentivize the 
recombination of new knowledge and technological diversification: a future analysis could investigate this aspect in more 
detail. 
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Appendix 

Section A – Notes on the construction of the angular separation variable 

Table A1 - Schmoch's technology classification 

 Area, field IPC code 
I Electrical engineering  
1 Electrical machinery, 

apparatus, energy 
F21#, H01B, H01C, H01F, H01G, H01H, H01J, H01K, H01M, H01R, H01T, 
H02#, H05B, H05C, H05F, H99Z 

2 Audio-visual technology G09F, G09G, G11B, H04N-003, H04N-005, H04N-009, H04N-013, H04N-
015, H04N-017, H04R, H04S, H05K 

3 Telecommunications G08C, H01P, H01Q, H04B, H04H, H04J, H04K, H04M, H04N-001, H04N-
007, H04N-011, H04Q 

4 Digital communication H04L 

5 Basic communication 
processes 

H03# 

6 Computer technology (G06# not G06Q), G11C, G10L 

7 IT methods for 
management 

G06Q 

8 Semiconductors H01L 
II Instruments  
9 Optics G02#, G03B, G03C, G03D, G03F, G03G, G03H, H01S  
10 Measurement G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, G01L, G01M, (G01N 

not G01N-033), G01P, G01R, G01S; G01V, G01W, G04#, G12B, G99Z 

11 Analysis of biological 
materials 

G01N-033 

12 Control G05B, G05D, G05F, G07#, G08B, G08G, G09B, G09C, G09D 
13 Medical technology A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N, H05G 

III Chemistry  
14 Organic fine chemistry (C07B, C07C, C07D, C07F, C07H, C07J, C40B) not A61K, A61K-008, A61Q 

15 Biotechnology (C07G, C07K, C12M, C12N, C12P, C12Q, C12R, C12S) not A61K 

16 Pharmaceuticals A61K not A61K-008 
17 Macromolecular 

chemistry, polymers 
C08B, C08C, C08F, C08G, C08H, C08K, C08L 

18 Food chemistry A01H, A21D, A23B, A23C, A23D, A23F, A23G, A23J, A23K, A23L, C12C, 
C12F, C12G, C12H, C12J, C13D, C13F, C13J, C13K 

19 Basic materials chemistry  A01N, A01P, C05#, C06#, C09B, C09C, C09F, C09G, C09H, C09K, C09D, 
C09J, C10B, C10C, C10F, C10G, C10H, C10J, C10K, C10L, C10M, C10N, 
C11B, C11C, C11D, C99Z 

20 Materials, metallurgy C01#, C03C, C04#, C21#, C22#, B22# 
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 Area, field IPC code 
I Electrical engineering  
21 Surface technology, 

coating 
B05C, B05D, B32#, C23#, C25#, C30#  

22 Micro-structure and nano-
technology 

B81#, B82# 

23 Chemical engineering B01B, B01D-000#, B01D-01##, B01D-02##, B01D-03##, B01D-041, B01D-
043, B01D-057, B01D-059, B01D-06##, B01D-07##, B01F, B01J, B01L, 
B02C, B03#, B04#, B05B, B06B, B07#, B08#, D06B, D06C, D06L, F25J, 
F26#, C14C, H05H 

24 Environmental technology A62D, B01D-045, B01D-046, B01D-047, B01D-049, B01D-050, B01D-051, 
B01D-052, B01D-053, B09#, B65F, C02#, F01N, F23G, F23J, G01T, E01F-
008, A62C 

IV Mechanical engineering  
25 Handling B25J, B65B, B65C, B65D, B65G, B65H, B66#, B67# 
26 Machine tools B21#, B23#, B24#, B26D, B26F, B27#, B30#, B25B, B25C, B25D, B25F, 

B25G, B25H, B26B 
27 Engines, pumps, turbines F01B, F01C, F01D, F01K, F01L, F01M, F01P, F02#, F03#, F04#, F23R, 

G21#, F99Z 
28 Textile and paper  

machines 
A41H, A43D, A46D, C14B, D01#, D02#, D03#, D04B, D04C, D04G, D04H, 
D05#, D06G, D06H, D06J, D06M, D06P, D06Q, D99Z, B31#, D21#, B41# 

29 Other special machines A01B, A01C, A01D, A01F, A01G, A01J, A01K, A01L, A01M, A21B, A21C, 
A22#, A23N, A23P, B02B, C12L, C13C, C13G, C13H, B28#, B29#, C03B, 
C08J, B99Z, F41#, F42# 

30 Thermal processes and 
apparatus 

F22#, F23B, F23C, F23D, F23H, F23K, F23L, F23M, F23N, F23Q, F24#, 
F25B, F25C, F27#, F28# 

31 Mechanical elements F15#, F16#, F17#, G05G 
32 Transport B60#, B61#, B62#, B63B, B63C, B63G, B63H, B63J, B64# 
V Other fields  
33 Furniture, games A47#, A63# 
34 Other consumer goods A24#, A41B, A41C, A41D, A41F, A41G, A42#, A43B, A43C, A44#, A45#, 

A46B, A62B, B42#, B43#, D04D, D07#, G10B, G10C, G10D, G10F, G10G, 
G10H, G10K, B44#, B68#, D06F, D06N, F25D, A99Z 

35 Civil engineering  E02#, E01B, E01C, E01D, E01F-001, E01F-003, E01F-005, E01F-007, E01F-
009, E01F-01#, E01H, E03#, E04#, E05#, E06#, E21#, E99Z 

   
Source:  WIPO IPC-Technology Concordance Table.   
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Section B – Descriptive statistics  

Table B1 – Detailed description of variables 

Variables Description Unit of 
measure 

Type Source 

Technological 
diversification 
(TECH_DIV) 

Entropy index of technological 
diversification at subclass level. 

 
Index 

 
Dependent 

Authors’ elaboration 
on RISIS CIB 
database. 

Unrelated diversification 
(UT_DIV) 

Entropy index of technological 
diversification at IPC section level. 

 
Index 

 
Dependent 

Authors’ elaboration 
on RISIS CIB 
database. 

Related diversification 
(RT_DIV) 

Difference between technological 
diversification and unrelated diversification. 

 
Index 

 
Dependent 

Authors’ elaboration 
on RISIS CIB 
database. 

 
International breadth 
(INT_BREADTH) 

 
Total number of foreign host locations. 

 
Count 

 
Independent  

Authors’ elaboration 
on RISIS CIB 
database. 

 
International depth   
(INT_DEPTH) 

Adjusted Herfindahl concentration index of 
patent distribution, across total number of 
foreign host locations. 

 
Index 

 
Independent 

Authors’ elaboration 
on RISIS CIB 
database. 

Technological 
dissimilarity 
(TECH_DISS) 

Technological dissimilarity between 
companies and foreign host locations, as 
measured by the inverse of the angular 
separation indicator. 

 
Index 

 
Independent 

Authors’ elaboration 
on OECD REGPAT 
database. 

R&D intensity  
(RD_INTENSITY) 

R&D expenditure scaled to total assets. Share (%) Control ORBIS Bureau Van 
Dijk database. 

R&D intensity, dummy 
(Dummy(RD_INTENS)) 

Whether missing values of R&D intensity 
are replaced by 0. 

Binary Control ORBIS Bureau Van 
Dijk database. 

Number of employees 
(EMPLOYEES) 

Total number of employees. Thousands 
of people 

Control ORBIS Bureau Van 
Dijk database. 

Production value 
(PROD_VALUE) 

Total production value. Thousands 
of euros 

Control ORBIS Bureau Van 
Dijk database. 

Return on Assets, net 
(ROA_NET) 

Return on Total Assets (net, after taxes). Share (%) Control ORBIS Bureau Van 
Dijk database. 

Patent stock 
(PAT_STOCK) 

Firms’ knowledge stock measured by the 
number of total patent applications 
accumulated in the previous year. 

 
Count 

 
Control 

Authors’ elaboration 
on RISIS CIB 
database. 

Technological 
internationalization  
(TECH_INTERN)) 

Share of international patent applications 
out of the total ones. 

 
Share(%) 

 
Control 

Authors’ elaboration 
on RISIS CIB 
database. 

Intra-organizational 
linkages 
(CO_PAT) 

Total number of co-authored patent 
applications. 

 
Count 

 
Control  

Authors’ elaboration 
on RISIS CIB 
database. 

Source: Authors’ elaboration. 
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Table B2 – Descriptive statistics  

     Obs   Mean   Std. Dev.   min   max   p25   Median   p75   p90 

TECH_DIV 10,818 1.848 0.908 0 4.509 1.205 1.806 2.47 3.059 
RT_DIV 10,818 1.025 0.642 0 2.873 0.548 0.983 1.451 1.919 
UT_DIV 10,818 0.825 0.425 0 1.955 0.562 0.824 1.151 1.373 
INT_BREADTH 10,818 6.088 8.803 0 89 1 3 7 15 
INT_DEPTH 10,797 0.164 0.302 0 1 0.005 0.024 0.111 0.779 
TECH_DISS 9,539 0.335 0.194 0 0.799 0.187 0.349 0.485 0.588 
RD_INTENS 10,818 0.055 0.087 -0.004 1.372 0.009 .027 0.067 0.128 
EMPLOYEES 10,754 34,410.667 67,823.052 1 2,300,000 3,580 11,047 35,864 95,359 

PROD_VALUE 10,785 11,105,311 2.30e+07 -7.713 4.296e+08 790,528.63 2,571,167.4 9,392,100 27,857,200 

 ROA_NET 10,773 3.347 12.580 -99.235 95.336 1.547 5.036 8.534 12.871 
 PAT_STOCK 10,818 673.116 1,940.377 1 29,852 48 140 464 1524 
 TECH_INT 10,818 0.493 0.333 0 1 0.211 0.455 0.8 1 
 CO_PAT 10,818 7.13 35.958 0 687 0 0 2 12 

Source: Authors’ elaboration. 
 
Table B3 – Correlation matrix 
 

Source: Authors’ elaboration. 
. 
 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
(1) TECH_DIV 1.000             
(2) RT_DIV 0.906*** 1.000            
(3) UT_DIV 0.765*** 0.421*** 1.000           
(4) INT_BREADTH 0.534*** 0.550*** 0.309*** 1.000          
(5) INT_DEPTH -0.471*** -0.408*** -0.384*** -0.265*** 1.000         
(6) TECH_DISS 0.532*** 0.538*** 0.315*** 0.558*** -0.415*** 1.000        
(7) RD_INTENS -0.199*** -0.136*** -0.220*** -0.045*** 0.096*** -0.074*** 1.000       
(8) Log(EMPLOYEES) 0.509*** 0.470*** 0.377*** 0.461*** -0.266*** 0.467*** -0.460*** 1.000      
(9) Log(PROD_VALUE) 0.493*** 0.457*** 0.362*** 0.442*** -0.263*** 0.459*** -0.497*** 0.922*** 1.000     
(10) ROA_NET 0.158*** 0.139*** 0.127*** 0.131*** -0.136*** 0.177*** -0.492*** 0.331*** 0.425*** 1.000    
(11) Log(PAT_STOCK) 0.574*** 0.573*** 0.358*** 0.646*** -0.385*** 0.663*** -0.059*** 0.510*** 0.524*** 0.170*** 1.000   
(12) TECH_INT -0.113*** -0.109*** -0.078*** 0.132*** 0.054*** -0.237*** -0.081*** -0.003 -0.018* -0.004 -0.088*** 1.000  
(13) Log(CO_PAT) 0.428*** 0.441*** 0.247*** 0.633*** -0.211*** 0.478*** 0.005 0.372*** 0.382*** 0.069*** 0.579*** 0.058*** 1.000 
*** p<0.01, ** p<0.05, * p<0.1 
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Figure B4 – Correlation plots between technology diversification and international breadth (with 95% confidence intervals) 

 
(a) Overall  (b) Related (c) Unrelated 

Source: Authors’ elaboration. 
 

  

Figure B5 – Correlation plots between technology diversification and international depth (with 95% confidence intervals) 

 
(a) Overall  (b) Related (c) Unrelated 

Source: Authors’ elaboration. 
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Figure B5 – Correlation plots between technology diversification and technological dissimilarity (with 95% confidence intervals) 

 
(a) Overall  (b) Related (c) Unrelated 

Source: Authors’ elaboration. 
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Table C1 – Robustness checks: excluding US based companies 
 (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIVi,t  TECH_DIVi,t  RT_DIVi,t  RT_DIVi,t  UT_DIVi,t  UT_DIVi,t  
       
INT_BREADTHi,t-1 0.0377*** 0.0141*** 0.0221*** 0.0112*** 0.0155*** 0.00286** 
 (0.00662) (0.00259) (0.00534) (0.00202) (0.00345) (0.00127) 
INT_DEPTHi,t-1 -0.0380** -0.0641** -0.0277** -0.0318* -0.0105 -0.0329* 
 (0.0177) (0.0285) (0.0124) (0.0192) (0.0105) (0.0182) 
TECH_DISSi, t-1 0.409*** 0.326*** 0.292*** 0.234*** 0.118** 0.0934* 
 (0.0838) (0.0921) (0.0602) (0.0626) (0.0470) (0.0541) 
INT_BREADTHi,t-1 * TECH_DISSi,t-1 -0.0421***  -0.0192**  -0.0229***  
 (0.0105)  (0.00861)  (0.00536)  
INT_DEPTHi,t-1 * TECH_DISSi, t-1  0.0398  -0.00873  0.0497 
  (0.0643)  (0.0441)  (0.0435) 
RD_INTENSi,t-1 -0.231 -0.248 -0.118 -0.126 -0.105 -0.115 
 (0.287) (0.290) (0.210) (0.211) (0.156) (0.156) 
Dummy(RD_INTENSi,t-1) 0.0357 0.0328 -0.0252 -0.0276 0.0614 0.0610 
 (0.118) (0.118) (0.0405) (0.0405) (0.119) (0.119) 
Log(EMPLOYEESi,t-1) 0.0389* 0.0408* 0.0202 0.0207 0.0186 0.0201 
 (0.0235) (0.0238) (0.0185) (0.0187) (0.0133) (0.0134) 
Log(PROD_VALUEi,t-1) 0.00270 0.00126 -0.00135 -0.00195 0.00407 0.00323 
 (0.0159) (0.0163) (0.0150) (0.0151) (0.00696) (0.00690) 
ROA_NETi,t-1 0.000268 0.000245 -0.000642 -0.000653 0.000895 0.000884 
 (0.000958) (0.000957) (0.000593) (0.000594) (0.000631) (0.000630) 
Log(PAT_STOCKi,t-1) 0.0168 0.0181 0.00718 0.00777 0.00888 0.00959 
 (0.0180) (0.0181) (0.0124) (0.0124) (0.0108) (0.0109) 
TECH_INTi,t-1 -0.191*** -0.182*** -0.0651* -0.0607 -0.123*** -0.119*** 
 (0.0523) (0.0525) (0.0375) (0.0375) (0.0325) (0.0325) 
Log(CO_PATi,t-1) 0.00570 0.00401 0.00325 0.00241 0.00272 0.00186 
 (0.0100) (0.0106) (0.00781) (0.00809) (0.00527) (0.00540) 
       
Constant 1.178*** 1.211*** 0.644*** 0.666*** 0.538*** 0.549*** 
 (0.258) (0.263) (0.205) (0.208) (0.146) (0.148) 
       
Observations 5,773 5,773 5,773 5,773 5,773 5,773 
R-squared 0.824 0.823 0.817 0.816 0.669 0.669 
R-squared adj. 0.801 0.800 0.793 0.793 0.627 0.626 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 630 630 630 630 630 630 

 
Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
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Table C2 – Robustness checks: baseline estimation with 2-year lags for the independent variables 

 (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIVi,t  TECH_DIVi,t  RT_DIVi,t  RT_DIVi,t  UT_DIVi,t  UT_DIVi,t  
       
INT_BREADTHi,t-2 0.0260*** 0.0104*** 0.0193*** 0.00927*** 0.00651** 0.00108 
 (0.00495) (0.00199) (0.00398) (0.00164) (0.00263) (0.000841) 
INT_DEPTHi,t-2 -0.0244* -0.0623*** -0.00951 -0.0167 -0.0147* -0.0442*** 
 (0.0129) (0.0234) (0.00919) (0.0176) (0.00794) (0.0153) 
TECH_DISSi,t-2 0.343*** 0.316*** 0.254*** 0.202*** 0.0816** 0.106** 
 (0.0626) (0.0689) (0.0459) (0.0507) (0.0365) (0.0419) 
INT_BREADTHi,t-2 * TECH_DISSi,t-2 -0.0274***  -0.0169**  -0.0102**  
 (0.00827)  (0.00667)  (0.00400)  
INT_DEPTHi,t-2 * TECH_DISSi,t-2  0.0812  0.000748  0.0774** 
  (0.0537)  (0.0414)  (0.0333) 
RD_INTENSi,t-2 -0.0574 -0.0707 0.00899 -0.000934 -0.0658 -0.0691 
 (0.177) (0.177) (0.132) (0.132) (0.113) (0.113) 
Dummy(RD_INTENSi,t-2) 0.0472 0.0502 0.00843 0.0102 0.0391 0.0403 
 (0.0505) (0.0510) (0.0483) (0.0486) (0.0331) (0.0332) 
Log(EMPLOYEESi,t-2) 0.0574*** 0.0599*** 0.0351** 0.0361** 0.0224* 0.0238* 
 (0.0208) (0.0209) (0.0163) (0.0164) (0.0130) (0.0131) 
Log(PROD_VALUEi,t-2) 0.00671 0.00521 0.00308 0.00229 0.00386 0.00318 
 (0.0153) (0.0153) (0.0122) (0.0123) (0.00886) (0.00891) 
ROA_NETi,t-2 0.000410 0.000412 6.75e-05 7.04e-05 0.000357 0.000357 
 (0.000638) (0.000639) (0.000467) (0.000468) (0.000396) (0.000396) 
Log(PAT_STOCKi,t-2) -0.0271* -0.0262* -0.0241** -0.0238** -0.00303 -0.00251 
 (0.0150) (0.0150) (0.0104) (0.0105) (0.00908) (0.00909) 
TECH_INTi,t-2 -0.187*** -0.178*** -0.110*** -0.103*** -0.0776*** -0.0757*** 
 (0.0397) (0.0397) (0.0287) (0.0286) (0.0248) (0.0246) 
Log(CO_PATi,t-2) 0.00804 0.00691 -0.00150 -0.00234 0.00951*** 0.00922*** 
 (0.00688) (0.00702) (0.00532) (0.00542) (0.00356) (0.00356) 
       
Constant 1.315*** 1.328*** 0.725*** 0.747*** 0.590*** 0.582*** 
 (0.238) (0.239) (0.171) (0.172) (0.137) (0.137) 
       
Observations 8,424 8,424 8,424 8,424 8,424 8,424 
R-squared 0.838 0.838 0.824 0.824 0.716 0.716 
R-squared adj. 0.818 0.818 0.802 0.802 0.681 0.681 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 888 888 888 888 888 888 

 
Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
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Table C3 – Robustness checks: baseline estimation with the inverse of the adjusted Herfindahl-Hirschman index as dependent variable 
 (1) (2) (3) (4) (5) (6) 
VARIABLES TECH_DIV_HHi,t  TECH_DIV_HHi,t  TECH_DIV_HHi,t  TECH_DIV_HHi,t  TECH_DIV_HHi,t  TECH_DIV_HHi,t  
       
INT_BREADTHi,t-1 0.00218***   0.00123*** 0.00868*** 0.00174*** 
 (0.000460)   (0.000454) (0.00138) (0.000445) 
INT_DEPTHi,t-1  -0.0186***  -0.0147*** -0.00967*** -0.0322*** 
  (0.00355)  (0.00364) (0.00373) (0.00758) 
TECH_DISSi,t-1   0.0519*** 0.0341** 0.0673*** 0.0708*** 
   (0.0166) (0.0168) (0.0193) (0.0225) 
INT_BREADTHi,t-1 * TECH_DISSi,t-1     -0.0126***  
     (0.00220)  
INT_DEPTHi,t-1 * TECH_DISSi, t-1      0.0572*** 
      (0.0169) 
RD_INTENSi,t-1 0.158*** 0.161*** 0.163*** 0.158*** 0.161*** 0.160*** 
 (0.0394) (0.0391) (0.0389) (0.0392) (0.0385) (0.0393) 
Dummy(RD_INTENSi,t-1) 0.00786 0.00784 0.00880 0.00774 0.00671 0.00818 
 (0.0125) (0.0126) (0.0127) (0.0125) (0.0123) (0.0124) 
Log(EMPLOYEESi,t-1) 0.0110** 0.0110** 0.0119** 0.00986* 0.00941* 0.0104** 
 (0.00515) (0.00518) (0.00516) (0.00516) (0.00518) (0.00519) 
Log(PROD_VALUEi,t-1) 0.00110 0.000849 0.00108 0.000794 0.000995 0.000753 
 (0.00370) (0.00370) (0.00372) (0.00369) (0.00370) (0.00371) 
ROA_NETi,t-1 -0.000144 -0.000121 -0.000114 -0.000144 -0.000145 -0.000144 
 (0.000220) (0.000222) (0.000222) (0.000222) (0.000222) (0.000222) 
Log(PAT_STOCKi,t-1) 0.0106** 0.0116*** 0.0116*** 0.00969** 0.00937** 0.00977** 
 (0.00440) (0.00437) (0.00436) (0.00437) (0.00435) (0.00435) 
TECH_INTi,t-1 -0.0697*** -0.0696*** -0.0594*** -0.0687*** -0.0725*** -0.0697*** 
 (0.0121) (0.0120) (0.0118) (0.0120) (0.0120) (0.0120) 
Log(CO_PATi,t-1) 0.00127 0.00233 0.00241 0.000826 0.00141 0.000976 
 (0.00179) (0.00177) (0.00178) (0.00177) (0.00173) (0.00176) 
Constant 0.574*** 0.567*** 0.551*** 0.573*** 0.562*** 0.559*** 
 (0.0590) (0.0589) (0.0588) (0.0587) (0.0586) (0.0591) 
       
Observations 10,818 10,818 10,818 10,818 10,818 10,818 
R-squared 0.641 0.642 0.641 0.642 0.643 0.643 
R-squared adj. 0.599 0.599 0.598 0.600 0.601 0.600 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 
N_clust 1125 1125 1125 1125 1125 1125 

 
Note: Clustered standard errors at firm level are in parentheses. The significance levels of the statistical test are given by the p-value, that is: *** p<0.01, ** p<0.05, * p<0.1. 
Source: Authors’ elaboration. 
 


